Examination - Numerical PDEs, Spring 2018

Due on June 8th, 2018

1. Solve the following initial value problems analytically:
(a) $y^{\prime}=t^{3} ; y(0)=0$.
(b) $y^{\prime}=a y+b ; y(0)=y_{0}$, where a and b are scalars.
(c) $y^{\prime}=a\left(1-y^{2}\right) ; y(0)=0$, where a is a scalar.
2. Find the range of α for which the linear multistep method
$y_{n+3}+\alpha\left(y_{n+2}-y_{n+1}\right)-y_{n}=\frac{1}{2}(3+\alpha) h\left(f\left(t_{n+2}, y_{n+2}\right)+f\left(t_{n+1}, y_{n+1}\right)\right)$
is zero-stable. Show that there is a value of α for which the method has order 4 but that if the method is to be zero-stable, its order cannot exceed 2.
3. Show that the following scheme is consistent with the equation $u_{t}+$ $c u_{t x}+a u_{x}=f$.

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+c \frac{u_{j+1}^{n+1}-u_{j-1}^{n+1}-u_{j+1}^{n}+u_{j-1}^{n}}{2 \Delta t \Delta x}+a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \Delta x}=f_{j}^{n} .
$$

4. Show that the following scheme

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+a \frac{u_{j+2}^{n}-3 u_{j+1}^{n}+3 u_{j}^{n}-u_{j-1}^{n}}{(\Delta x)^{3}}=f_{j}^{n}
$$

is consistent with $u_{t}+a u_{x x x}=f$. Moreover, if $s=a \Delta t /(\Delta x)^{3}$ is constant, then it is stable when $0 \leq s \leq 1 / 4$.
5. Show that the solution of the initial value problem for

$$
u_{t}+u_{x}=\cos ^{2} u
$$

is given by

$$
u(x, t)=\tan ^{-1}\left\{\tan \left[u_{0}(x-t)\right]+t\right\},
$$

where $u_{0}(x)$ is the initial condition.
6. Show that the following scheme

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+\frac{a}{2}\left\{\frac{u_{j+1}^{n+1}-u_{j}^{n+1}}{\Delta x}+\frac{u_{j}^{n}-u_{j-1}^{n}}{\Delta x}\right\}=f_{j}^{n}
$$

is consistent with

$$
u_{t}+a u_{x}=f
$$

7. Find an differential equation where the following different scheme is consistent with

$$
u_{j}^{n+1}=\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)-\frac{1}{2} \frac{\Delta t}{(\Delta x)^{3}}\left(u_{j+2}^{n}-2 u_{j+1}^{n}+2 u_{j-1}^{n}-u_{j-2}^{n}\right) .
$$

When will the scheme be stable?
8. Consider a scheme for $u_{t}=u_{x x}$ of the form

$$
u_{j}^{n+1}=(1-2 \alpha-2 \beta) u_{j}^{n}+\alpha\left(u_{j+1}^{n}+u_{j-1}^{n}\right)+\beta\left(u_{j+2}^{n}+u_{j-2}^{n}\right) .
$$

Denote $\mu=\Delta t /(\Delta x)^{2}$. Show that when μ is a constant, as Δt and Δx tend to zero, that the scheme is inconsistent unless

$$
\alpha+4 \beta=\mu
$$

Show that the scheme is four-order accurate in x if $\beta=-\alpha / 16$.

